Subsections
[Cr:4, Lc:3, Tt:1, Lb:0]
- Review of basics; Fourier Series, Fourier Transforms in
; Plancherel and Fourier Inversion
Theorems. Convolutions.
- The Schwartz Space and Tempered Distributions.
- Poisson Summation Formula and applications. Uncertainty Principles:
Heisenberg, Benedicks-Amrein-Berthier, and Beurling. Paley-Wiener
Theorems.
- Translation Invariant Operators on spaces.
Interpolation Theorems (Reisz-Thorin and Marcinkeiwicz).
- Maximal functions. Hilbert Transform and convergence of Fourier Series
and Integrals. Calderon-Zygmund Singular Integrals.
Additional topics (a subset of the following):
- Littlewood-Paley inequalities; Hormander-Mihlin and Marcinkeiwicz
Multipliers.
- -BMO
- Time- frequency phase plane analysis. Wavelets.
- E. Stein and R. Shakarchi: Fourier Analysis, Princeton
University Press (2003).
- E. Stein and R. Shakarchi: Complex Analysis, Princeton
University Press (2005).
- Javier Duoandikoetxea: Fourier Analysis, AMS (2001).