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Imagine that a shopkeeper has an infinite supply of coins of two different denominations: 5 cents
and 7 cents. You wish to buy something which is priced 23 cents from a vending machine. You have
money, but the vending machine accepts only 5 cent and 7 cent coins. Can the shopkeeper help?
This problem about giving exact change can be easily put in a more mathematical setting as follows:
does the equation 5x + 7y = 23 admit a solution in nonnegative integers x and y? The answer to
this question is No. What is more interesting is the role played by the number 23 in this problem;
23 is the largest number which cannot be so expressed. The mathematical generalization of this is
easy to come up with. Given two positive integers a and b with gcd(a, b) = 1, what is the largest
integer n such that the equation ax+ by = n has no solution with x, y ∈ Z≥0. We use the notation
g(a, b) to denote this largest integer, and use n(a, b) to denote the (finite) number of positive integers
that cannot be expressed in the form ax + by with x, y ∈ Z≥0. There is an obvious extension of
this from coins of two denominations to one of k denominations, for any k > 2. The problem to
determine the function g and n dates back to the 1880’s, and is one of the most well known problems
in additive Number theory, with a long and rich history. Whereas it is not difficult to show that
g(a, b) = ab− a− b and that n(a, b) = 1

2(a− 1)(b− 1) and has been known since the 1880’s, there is
no analogous result for more than two variables.

I will prove the two formulas stated above in several ways. I will then show how g and n can
be determined in some special cases by using one or two basic tools and results. I will conclude
by asking some important open questions regarding this problem. No background beyond a basic
knowledge of modular arithmetic is required, and I plan to aim this at the interested and motivated
undergraduate, hopefully without losing the interest of the more mature mathematician.
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