Optimal control protocols for the $\mathrm{F_{1}}$ -ATPase motor

Deepak Gupta

Department of Physics, Indian Institute of Technology Indore 453552, India

A biomolecular motor composed of protein complexes exchanges energy, matter, and information with its surroundings. Despite being in contact with a fluctuating environment, it performs (on average) a directed motion in accordance with the second law by transducing chemical energy stored in the surrounding environment^{[1](#page-0-0)}. Among several biomolecular motors the F_0F_1 -ATP synthase has gained much attention due to its high efficiency^{[2](#page-0-1)}. It produces ~95% of the cellular ATP (adenosine triphosphate) from ADP (adenosine diphosphate) and Pi (inorganic phosphate). The membrane-embedded F_o -unit utilizes energy from proton flux to rotate the F_1 -unit's γ-crankshaft and synthesizes ATP molecules. Since the *γ*-crankshaft rotates as fast as \sim 350 revolutions per second, it remains a puzzle how F_0F_1 transduces free energy in a highly efficient manner. One possible way to investigate this is to uncover the functional principle of that particular unit where ATP is synthesized, i.e., the F_1 -ATPase. To this end, we focus on an isolated F_1 -ATPase, which can also be controlled in an experimental setup³[.](#page-0-2) We design a control protocol (mimicking F_0 operation) by which the F_1 unit's γ -crankshaft can be rotated to synthesize ATP at low dissipation. We follow a near-equilibrium framework to construct a non-trivial designed protocol⁴[.](#page-0-3) Then, we rotate the crankshaft with this designed protocol to compute dissipation. Our analysis reveals that the designed protocol dissipates less energy than a constant velocity protocol for a wide range of protocol durations⁵[.](#page-0-4)

^{[1](#page-0-5)} Mugnai, M. L., Hyeon, C., Hinczewski, M. & Thirumalai, D. Theoretical perspectives on biological machines. Rev.

Mod. Phys. 92, 025001 (2020).

^{[2](#page-0-6)} Soga, N., Kimura, K., Kinosita, K., Yoshida, M. & Suzuki, T. Perfect chemomechanical coupling of FOF1-ATPsynthase 114, 4960–4965 (2017).

^{[3](#page-0-7)} Toyabe, S. et al. Nonequilibrium energetics of a single F1-ATPase molecule. Phys. Rev. Lett. 104, 198103 (2010).

Sivak, D. A. & Crooks, G. E. Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108, 190602 (2012). [4](#page-0-8)

^{[5](#page-0-9)} Gupta, D. et al. Optimal control of the F₁-ATPase molecular motor, The Journal of Physical Chemistry Letters 13 (51), 11844-11849 (2022).