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Differential equations serve as powerful tools for modeling various natural phenomena, with
diffusion-reaction models standing out as a versatile class within the realm of Science. While analytical
solutions for these models are sporadically attainable, reliance on numerical schemes becomes essential.
This presentation delves into two specific models, one arising in computational fluid dynamics (CFD)
and the other in computational chemistry (CC).

One of the fundamental equations of CFD is the steady-state convection diffusion reaction
equation, which is used to model the concentration of species. It can be shown that the analytical
solution of such equations under appropriate assumptions satisfies the maximum principles. We want
the numerical schemes to satisfy the discrete counterpart, the discrete maximum principle. Failure to
do so allows the numerical solution to have layers on the boundary and the interior. Layers are narrow
regions where the solution has a steep gradient. Standard numerical techniques fail to capture this
property, so we have a presence over and undershoots near the layers. A solution to this problem is the
use of so-called stabilization techniques. The talk’s first part will examine the nonlinear stabilization
techniques known as the Algebraic Flux Correction [1]. We will concentrate on the a posteriori error
estimators and their interplay on grids with hanging nodes [2, 3].

The second part of the talk will deal with implicit solvation models arising in CC. Most
chemical processes and virtually all biochemical processes happen in a condensed phase, where the
reacting part, or generally the studied part, is embedded in an environment that usually consists
of a solvent. Implicit solvation models treat the solvent as a continuum described only by a few
macroscopic properties. They are computationally efficient, require fewer parameters, and are widely
used in practice. In this talk, we will concentrate on the nonlinear Poisson-Boltzmann (PB) equation
which is used to model the electrostatic potential. Another important aspect while modeling implicit
models is the choice of the solute-solvent boundary. This talk will examine the recently proposed
domain decomposition for the PB equation defined on the solvent-excluded surface (SES), [4].
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